Opti S03A Midterm Solutions Spring 2021
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Digression: Rearranging the above Taylor series, we find
(x?2=2x+2)"1= i(Z + 2x + x2) —1—16(2 + 2x + x?)x* +é(2 + 2x + x?)x8
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The infinite series on the right-hand side of the preceding equation is a geometric series that
converges to 1/[1 + (x*/4)], provided that x* < 4 or |x| < V2. The end result is

(x2=2x+2)" =2 +2x+2)/(x* + 4),

which is readily verified since (x? — 2x + 2)(x? + 2x + 2) = (x? + 2)? — 4x? = x* + 4. Note
that the radius of convergence of our Taylor series is V2. This is because the roots of the
polynomial equation x? — 2x +2 =0 are x,, = 1 +i=V2exp(+in/4). These roots are the
poles of the (otherwise analytic) function f(z) = (z? — 2z + 2)~! in the complex z-plane. The
radius of convergence of the corresponding Taylor series in the z-plane is the distance from the

origin, z, = 0, to the nearest pole, which, in the present case, is V2.
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